Essayer le nouveau site
Connexion

Monsters
GP: 6 | W: 2 | L: 4
GF: 14 | GA: 15 | PP%: 10.00% | PK%: 88.89%
DG: Jean Francois Langelier | Morale : 45 | Moyenne d’équipe : 64
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Icehogs
10-9-0, 20pts
0
FINAL
2 Monsters
2-4-0, 4pts
Team Stats
OTL1SéquenceL1
6-3-0Fiche domicile2-1-0
4-6-0Fiche domicile0-3-0
5-3-2Derniers 10 matchs2-2-2
2.63Buts par match 2.33
2.74Buts contre par match 2.50
23.81%Pourcentage en avantage numérique10.00%
80.00%Pourcentage en désavantage numérique88.89%
Monsters
2-4-0, 4pts
4
FINAL
6 Icehogs
10-9-0, 20pts
Team Stats
L1SéquenceOTL1
2-1-0Fiche domicile6-3-0
0-3-0Fiche domicile4-6-0
2-2-2Derniers 10 matchs5-3-2
2.33Buts par match 2.63
2.50Buts contre par match 2.74
10.00%Pourcentage en avantage numérique23.81%
88.89%Pourcentage en désavantage numérique80.00%
Meneurs d'équipe
Buts
Teemu Pulkkinen
3
Passes
Victor Antipin
3
Points
Victor Antipin
5
Plus/Moins
Victor Antipin
4
Victoires
Malcolm Subban
2
Pourcentage d’arrêts
Malcolm Subban
0.912

Statistiques d’équipe
Buts pour
14
2.33 GFG
Tirs pour
183
30.50 Avg
Pourcentage en avantage numérique
10.0%
2 GF
Début de zone offensive
43.6%
Buts contre
15
2.50 GAA
Tirs contre
175
29.17 Avg
Pourcentage en désavantage numérique
88.9%%
1 GA
Début de la zone défensive
41.1%
Informations de l'équipe

Directeur généralJean Francois Langelier
EntraîneurKen Hitchcock
DivisionDivision Centrale
ConférenceConference 2
CapitaineVictor Mete
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance2,861
Billets de saison300


Informations de la formation

Équipe Pro32
Équipe Mineure18
Limite contact 50 / 56
Espoirs16


Historique d'équipe

Saison actuelle2-4
Historique47-32-10 (0.528%)
Apparitions en séries éliminatoires 1
Historique en séries éliminatoires (W-L)3 - 8 (0.273%)
Coupe Stanley0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jack McbainX100.007966877373789174737272766859486875670252900,000$
2Jacob PetersonXX100.0060459376718087747671727271625268826702511,700,000$
3Joseph VelenoX100.007445877372769274737373776564486876670252900,000$
4Sergey TolchinskyXX100.0071478372657375756072757167686254786703022,000,000$
5Steven LorentzXX100.0064459474737987727170707068665358846702811,700,000$
6Travis BoydXX100.0064459373717272737278707168655653586703111,800,000$
7Lukas SedlakXX100.0075588169726778766871717169645750856603221,700,000$
8Tomas NosekX100.0063509172737477717868687266715550846603221,700,000$
9Linden VeyXX100.0063458971697481696369686665615247846403321,250,000$
10Teemu PulkkinenXX100.0057449671697173726069717166574947356303321,100,000$
11David DesharnaisX100.005845946666666866736565696274772578630381900,000$
12Andrew DesjardinsX100.0069598567706877677966666862715625856303821,100,000$
13Victor Mete (C)X100.006245937667768673457662765673496085670261900,000$
14Sam Malinski (R)X100.006645898169727376457471726545456084660261900,000$
15Kaedan Korczak (R)X100.007145897672767376457466736045457082660243900,000$
16Sebastian Aho (DEF)X100.0066458275677490744573677459595254756602911,700,000$
17Victor AntipinX100.0061469472686981704571677265654850776503231,500,000$
18Alexis BinnerX100.0063488476766873714566666957605264856402621,000,000$
Rayé
1Seth GriffithXX100.0060449170697177696368687066574750206303221,100,000$
2Michal RepikXX100.0060439370706576686666676665564734206203621,100,000$
3Dan SextonXX100.0061439770667169676466666865544925196203721,100,000$
4Jordan SchroederX100.005543976967696867656665686459504224610341900,000$
5Danick PaquetteX100.0062488868736965646361606260454542205903421,000,000$
6Keenan SuthersXX100.007348807278676656485959635747466020590261750,000$
7Kevin GravelX100.006045957074677069456664716257464619630331800,000$
8Tyler CumaX100.0061458773716764704571627362515138196303511,250,000$
9Matt BartkowskiX100.0063499268706866674565627262645230196303611,250,000$
10Nico Gross (R)X100.006945807269707069456362735645457020620253750,000$
11Mark KaticX100.0059439670697177694568656862484634206203521,000,000$
MOYENNE D’ÉQUIPE100.00644790727071767059696770635951505664
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Malcolm Subban100.008079778081758379808282677053756703111,600,000$
2Jaroslav Janus100.007678777677788280818177465138826303521,050,000$
Rayé
1Brent Moran100.00798468817667857070777546475722600281750,000$
MOYENNE D’ÉQUIPE100.0078807479787383767780785356496063
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Ken Hitchcock70778461999911CAN744100,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Victor AntipinMonsters (Clb)D62354402162333.33%610918.300001000006000%000000.9100000000
2Sam MalinskiMonsters (Clb)D6134-54089103210.00%413823.1000051800006100%000000.5800000010
3Sergey TolchinskyMonsters (Clb)LW/RW6224-2551581321115.38%111519.33011118000000060.00%1500000.6900100000
4Steven LorentzMonsters (Clb)LW/RW6134200161510166.67%19716.2600000000080025.00%400000.8200000001
5Teemu PulkkinenMonsters (Clb)LW/RW630322013191615.79%19616.0300000000061040.00%500000.6200000101
6Kaedan KorczakMonsters (Clb)D6123-1009550720.00%612921.6110141500007000%000000.4600000000
7Lukas SedlakMonsters (Clb)LW/RW6123-220164197105.26%111419.10101516000000133.33%900000.5200000010
8Sebastian Aho (DEF)Monsters (Clb)D6033-140779640%912320.5601161600000000%000000.4900000000
9Victor MeteMonsters (Clb)D6022-5003712250%1114023.3301151900007000%000000.2900000000
10Alexis BinnerMonsters (Clb)D6022420972400%510717.940000100002000%000000.3700000000
11Tomas NosekMonsters (Clb)C6112-30029103410.00%110217.1200000000070046.23%10600000.3900000000
12Joseph VelenoMonsters (Clb)C6011-200119135100%111919.97000318000000053.19%14100000.1700000000
13David DesharnaisMonsters (Clb)C6011100273210%0589.72011016000000050.00%8000000.3400000000
14Linden VeyMonsters (Clb)LW/RW61011002452220.00%2416.9900000000000025.00%400000.4800000001
15Travis BoydMonsters (Clb)LW/RW6101-2204213587.69%111118.53000116000000057.14%700000.1800000000
16Andrew DesjardinsMonsters (Clb)C601120081010040%19616.1600000000080049.58%11900000.2100000000
17Jacob PetersonMonsters (Clb)LW/RW6000-30027174180%111719.64000318000000046.15%130000000000000
18Seth GriffithMonsters (Clb)LW/RW3000000011010%0134.6000000000000050.00%20000000000000
19Jordan SzwarzBlueJacketLW/RW3000100201010%0217.290000000000000%40000000000000
Statistiques d’équipe totales ou en moyenne108142640-9255104106183581137.65%52185717.20246341770000642149.12%50900000.4300100123
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Malcolm SubbanMonsters (Clb)62220.9122.3935101141600000060100
2Jaroslav JanusMonsters (Clb)10000.9332.7322001150000006000
Statistiques d’équipe totales ou en moyenne72220.9142.413740115175000066100


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Alexis BinnerMonsters (Clb)D261998-12-03SWENo212 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm1,000,000$0$0$No1,000,000$--------1,000,000$--------No--------Lien
Andrew DesjardinsMonsters (Clb)C381986-07-27CANNo196 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm1,100,000$0$0$No1,100,000$--------1,100,000$--------No--------Lien
Brent MoranMonsters (Clb)G281996-07-05CANNo195 Lbs6 ft4NoNoN/ANoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------Lien
Dan SextonMonsters (Clb)LW/RW371987-04-29USANo156 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm1,100,000$0$0$No1,100,000$--------1,100,000$--------No--------Lien
Danick PaquetteMonsters (Clb)C341990-07-17CANNo217 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm1,000,000$0$0$No1,000,000$--------1,000,000$--------No--------Lien
David DesharnaisMonsters (Clb)C381986-09-14CANNo180 Lbs5 ft7NoNoN/ANoNo1FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Jack McbainMonsters (Clb)C252000-01-06CANNo201 Lbs6 ft3NoNoN/ANoNo2FalseFalsePro & Farm900,000$0$0$No900,000$--------900,000$--------No--------Lien
Jacob PetersonMonsters (Clb)LW/RW251999-07-19SWENo170 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm1,700,000$0$0$No---------------------------Lien
Jaroslav JanusMonsters (Clb)G351989-09-21SLONo191 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm1,050,000$0$0$No1,050,000$--------1,050,000$--------No--------Lien
Jordan SchroederMonsters (Clb)C341990-09-29USANo174 Lbs5 ft8NoNoN/ANoNo1FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Joseph VelenoMonsters (Clb)C252000-01-13CANNo203 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm900,000$0$0$No900,000$--------900,000$--------No--------Lien
Kaedan KorczakMonsters (Clb)D242001-01-29CANYes201 Lbs6 ft3NoNoProspectNoNo32024-04-29FalseFalsePro & Farm900,000$0$0$No900,000$900,000$-------900,000$900,000$-------NoNo-------Lien
Keenan SuthersMonsters (Clb)LW/RW261998-04-27USANo245 Lbs6 ft8NoNoTrade2025-02-01NoNo1FalseFalsePro & Farm750,000$0$0$No---------------------------Lien
Kevin GravelMonsters (Clb)D331992-03-06USANo205 Lbs6 ft4NoNoFree AgentNoNo12024-07-22FalseFalsePro & Farm800,000$0$0$No---------------------------Lien
Linden VeyMonsters (Clb)LW/RW331991-07-17CANNo194 Lbs5 ft8NoNoN/ANoNo2FalseFalsePro & Farm1,250,000$0$0$No1,250,000$--------1,250,000$--------No--------Lien
Lukas SedlakMonsters (Clb)LW/RW321993-02-25CZENo205 Lbs6 ft0NoNoFree AgentNoNo22024-07-10FalseFalsePro & Farm1,700,000$0$0$No1,700,000$--------1,700,000$--------No--------Lien
Malcolm SubbanMonsters (Clb)G311993-12-21USANo215 Lbs6 ft2NoNoTrade2024-01-13NoNo1FalseFalsePro & Farm1,600,000$0$0$No---------------------------Lien
Mark KaticMonsters (Clb)D351989-05-09CANNo180 Lbs5 ft10NoNoTrade2024-01-27NoNo2FalseFalsePro & Farm1,000,000$0$0$No1,000,000$--------1,000,000$--------No--------Lien
Matt BartkowskiMonsters (Clb)D361988-06-04USANo192 Lbs6 ft1NoNoN/ANoNo1FalseFalsePro & Farm1,250,000$0$0$No---------------------------Lien
Michal RepikMonsters (Clb)LW/RW361988-12-31CZENo191 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm1,100,000$0$0$No1,100,000$--------1,100,000$--------No--------Lien
Nico GrossMonsters (Clb)D252000-01-26SUIYes183 Lbs6 ft1NoNoProspectNoNo32024-06-18FalseFalsePro & Farm750,000$0$0$No750,000$750,000$-------750,000$750,000$-------NoNo-------
Sam MalinskiMonsters (Clb)D261998-07-27USAYes190 Lbs5 ft11NoNoTrade2024-06-20NoNo12024-06-20FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Sebastian Aho (DEF)Monsters (Clb)D291996-02-17SWENo177 Lbs5 ft11NoNoTrade2024-01-27NoNo1FalseFalsePro & Farm1,700,000$0$0$No---------------------------Lien
Sergey TolchinskyMonsters (Clb)LW/RW301995-02-03RUSNo156 Lbs5 ft8NoNoN/ANoNo22024-04-29FalseFalsePro & Farm2,000,000$0$0$No2,000,000$--------2,000,000$--------No--------Lien
Seth GriffithMonsters (Clb)LW/RW321993-01-04CANNo190 Lbs5 ft9NoNoN/ANoNo2FalseFalsePro & Farm1,100,000$0$0$No1,100,000$--------1,100,000$--------No--------Lien
Steven LorentzMonsters (Clb)LW/RW281996-04-13CANNo192 Lbs6 ft3NoNoN/ANoNo1FalseFalsePro & Farm1,700,000$0$0$No---------------------------Lien
Teemu PulkkinenMonsters (Clb)LW/RW331992-01-02FINNo187 Lbs5 ft10NoNoN/ANoNo2FalseFalsePro & Farm1,100,000$0$0$No1,100,000$--------1,100,000$--------No--------Lien
Tomas NosekMonsters (Clb)C321992-09-01CZENo205 Lbs6 ft3NoNoTrade2024-11-02NoNo22024-07-07FalseFalsePro & Farm1,700,000$0$0$No1,700,000$--------1,700,000$--------No--------Lien
Travis BoydMonsters (Clb)LW/RW311993-09-14USANo190 Lbs6 ft0NoNoTrade2024-12-10NoNo12024-07-02FalseFalsePro & Farm1,800,000$0$0$No---------------------------Lien
Tyler CumaMonsters (Clb)D351990-01-19CANNo187 Lbs6 ft2NoNoN/ANoNo1FalseFalsePro & Farm1,250,000$0$0$No---------------------------Lien
Victor AntipinMonsters (Clb)D321992-12-06KAZNo171 Lbs5 ft10NoNoFree AgentNoNo32024-07-12FalseFalsePro & Farm1,500,000$0$0$No1,500,000$1,500,000$-------1,500,000$1,500,000$-------NoNo-------Lien
Victor MeteMonsters (Clb)D261998-06-07CANNo187 Lbs5 ft9NoNoN/ANoNo1FalseFalsePro & Farm900,000$0$0$No---------------------------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
3230.94192 Lbs6 ft01.661,189,063$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
133023
2Travis BoydTomas NosekLukas Sedlak31023
3Steven LorentzAndrew DesjardinsTeemu Pulkkinen27023
4Linden VeyDavid Desharnais9023
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Victor MeteSam Malinski35023
2Kaedan KorczakSebastian Aho (DEF)33023
3Victor AntipinAlexis Binner32032
4Victor MeteSam Malinski0032
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
160005
2Travis BoydDavid DesharnaisLukas Sedlak40005
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Victor MeteSam Malinski60005
2Kaedan KorczakSebastian Aho (DEF)40005
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Tomas NosekTeemu Pulkkinen50050
2Andrew DesjardinsSteven Lorentz50050
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Kaedan KorczakVictor Antipin50050
2Victor MeteSam Malinski50050
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Tomas Nosek50050Kaedan KorczakVictor Antipin50050
2Andrew Desjardins50050Victor MeteSam Malinski50050
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
150023
2Tomas Nosek50023
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Victor MeteSam Malinski50032
2Kaedan KorczakSebastian Aho (DEF)50032
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Victor MeteSam Malinski
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Tomas NosekVictor MeteSam Malinski
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Lukas Sedlak, , Teemu PulkkinenLukas Sedlak, Lukas Sedlak
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Victor Antipin, Alexis Binner, Victor MeteAlexis BinnerAlexis Binner, Sebastian Aho (DEF)
Tirs de pénalité
, , , Teemu Pulkkinen, Steven Lorentz
Gardien
#1 : Malcolm Subban, #2 : Jaroslav Janus


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Icehogs624000001415-13210000074330300000711-440.33314264001653018352605516175522510420210.00%9188.89%011222250.45%10120948.33%377847.44%151105144477940
Total624000001415-13210000074330300000711-440.33314264001653018352605516175522510420210.00%9188.89%011222250.45%10120948.33%377847.44%151105144477940
_Since Last GM Reset624000001415-13210000074330300000711-440.33314264001653018352605516175522510420210.00%9188.89%011222250.45%10120948.33%377847.44%151105144477940
_Vs Conference624000001415-13210000074330300000711-440.33314264001653018352605516175522510420210.00%9188.89%011222250.45%10120948.33%377847.44%151105144477940
_Vs Division624000001415-13210000074330300000711-440.33314264001653018352605516175522510420210.00%9188.89%011222250.45%10120948.33%377847.44%151105144477940

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
64L1142640183175522510401
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
62400001415
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
321000074
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
3030000711
Derniers 10 matchs
WLOTWOTL SOWSOL
220200
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
20210.00%9188.89%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
526055166530
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
11222250.45%10120948.33%377847.44%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
151105144477940


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2025-03-098Icehogs3Monsters2LXSommaire du match
2 - 2025-03-1016Icehogs1Monsters3WSommaire du match
3 - 2025-03-1124Monsters1Icehogs2LXSommaire du match
4 - 2025-03-1232Monsters2Icehogs3LSommaire du match
5 - 2025-03-1340Icehogs0Monsters2WSommaire du match
6 - 2025-03-1448Monsters4Icehogs6LSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3015
Assistance5,7022,882
Assistance PCT95.03%96.07%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
38 2861 - 95.38% 119,480$358,441$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
0$ 3,805,000$ 3,805,000$ 100,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 3 0$ 0$




Monsters Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Joseph Veleno82294675243814415625711.28%34161619.7137104111225151.97%10.9300
2Juuso Valimaki82136174136011410012010.83%101189023.058917650221030%00.7800
3Victor Mete7775562132055661016.93%95175422.7831013540220100%00.7100
4Jacob Peterson82233760141230962559.02%18149818.2748123400014252.34%00.8016
5Jack Mcbain80253358134214017524710.12%19161520.194594210122149.81%00.7224

Monsters Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Malcolm Subban43221150.8993.1823560212512370000.80826
2Jaroslav Janus33181010.8972.80175802827980100.3333
3Brent Moran11000.9382.00600023200000

Monsters Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
158236320704328525530411716020331451341141191605010140121199728551980415931027912257582784787248234569952813072584316.67%2245276.79%31509290551.94%1370263352.03%701136251.47%2017140218735941074544
Total Saison régulière8236320704328525530411716020331451341141191605010140121199728551980415931027912257582784787248234569952813072584316.67%2245276.79%31509290551.94%1370263352.03%701136251.47%2017140218735941074544
Séries éliminatoires
15514000001418-42020000046-2312000001012-22142438004640134553544015043439015320.00%18666.67%06515541.94%8516850.60%437954.43%11073124396633
16624000001415-13210000074330300000711-4414264001653018352605516175522510420210.00%9188.89%011222250.45%10120948.33%377847.44%151105144477940
Total Séries éliminatoires1138000002833-55230000011101615000001723-6628507801101170317107959916325956819435514.29%27774.07%017737746.95%18637749.34%8015750.96%2621782698714573

Monsters Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Sebastian Aho (DEF)11066-3101017140%1623020.9903380000000%00.5200
2Victor Mete11066-40711200%2225323.0102260000000%00.4700
3Vyacheslav Leshchenko5235141041315.38%08016.06011200000025.00%01.2500
4Victor Antipin62354421633.33%610918.3000010000000%00.9100
5Teemu Pulkkinen11505-12142917.24%218116.52000200001050.00%00.5500

Monsters Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Malcolm Subban102440.8982.96568012827400000
2Jaroslav Janus31000.9022.801070055100000